Case(i) If (*) has imaginary number solutions. We can set three solutions such as:

$$\begin{cases} \alpha = p + qi \\ \beta = p - qi \\ \gamma = r \end{cases}$$
 (p, q, rare real numbers)

Then, by means of the formula between solutions and coefficients.

$$\begin{cases} (p+qi)+(p-qi)+r=0 \\ (p+qi)(p-qi)+r(p+qi)+r(p-qi)=-3 \end{cases} \iff \begin{cases} 2p+r=0 \\ p^2-\frac{q^2}{3}=1 \end{cases} \cdots \oplus$$

If we define a function $f(x) = -x^3 + 3x$ (x is real), real number solutions of (*) are the values of x where two graphs i.e. y = f(x) and y = k intersect. Therefore, by means of a graph,

$$r < -2$$

Thus.

$$|\gamma + 2| - |\gamma - 2| = |r + 2| - |r - 2| = -(r + 2) + (r - 2) = -4$$
 ... \mathbb{Q}

In addition, by means of \bigcirc , imaginary solutions of (*) are in the hyperbola C on the p-q plane.

$$C; p^2 - \frac{q^2}{3} = 1 \ (p > 1)$$

Focuses of C are $(\pm 2, 0)$, then.

$$|\alpha + 2| - |\alpha - 2| = |\beta + 2| - |\beta - 2| = 2$$
 ... 3

Because of 2 and 3.

$$|\alpha + 2| + |\beta + 2| + |\gamma + 2| - |\alpha - 2| - |\beta - 2| - |\gamma - 2| = 2 + 2 + (-4) = 0$$

Case(ii) If (*) has three real number solutions.

$$-2 \leq \alpha, \beta, \gamma \leq 2$$

Therefore,

$$|\alpha + 2| + |\beta + 2| + |\gamma + 2| - |\alpha - 2| - |\beta - 2| - |\gamma - 2|$$

$$= (\alpha + 2) + (\beta + 2) + (\gamma + 2) + (\alpha - 2) + (\beta - 2) + (\gamma - 2)$$

$$= 2(\alpha + \beta + \gamma) = 0$$

To conclude, because of (i) and (ii).

$$|\alpha + 2| + |\beta + 2| + |\gamma + 2| - |\alpha - 2| - |\beta - 2| - |\gamma - 2| = 0$$
 ... ans.