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Much the same as problem 9 till ®. Because AC=a then by means of Q.
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In addition, because 4 sin6y > 0, so —90° < ¢ < 90°.Then « such that @ + ¢ = 90° can exists.

Therfore, the absolute maximum of 8 is.
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In addition, if ZBAD has absolute maximum.
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If,a>7, no quadrilateral

+3
If,0 <a <1, sup(/BAC + L/CAD) = 180° + cos™" (aT) (when BC — 3 + a)
(If, 0 < a < 1, The quadrilateral ABCD is concave.)



That is, if and only if 1 < a < 7 ,/BAD has absolute maximum <= BC = 4,CD = 3" is
true.

Graphs of the functions of length of BC and /BAD /(/BAC + (CAD)



