

Much the same as problem 9 till \Im . Because AC=a then by means of \Im .

$$\sqrt{25 + 24\cos\theta} \ge a \Longleftrightarrow \cos\theta \ge \frac{a^2 - 25}{24}$$

If,
$$1 < a < 7$$
, $-1 < \frac{a^2 - 25}{24} < 1$, then

$$0^{\circ} < \theta \le \theta_0 < 180^{\circ} \left(\cos \theta_0 = \frac{a^2 - 25}{24} \right) \qquad \cdots \textcircled{4}$$

In addition, because $4 \sin \theta_0 > 0$, so $-90^\circ < \phi < 90^\circ$. Then α such that $\alpha + \phi = 90^\circ$ can exists.

Therfore, the absolute maximum of θ is.

$$\theta = \theta_0$$

Then,
$$\cos \alpha = \cos(90^\circ - \phi) = \sin \phi = \frac{4\cos\theta_0 + 3}{\sqrt{25 + 24\cos\theta_0}} = \frac{a^2 - 7}{6a}$$

$$BC^{2} = 3^{2} + a^{2} - 2 \cdot 3 \cdot a \cdot \frac{a^{2} - 7}{6a} = 16$$

$$\therefore \begin{cases} BC = 4 \\ CD = 3 \end{cases} \qquad \cdots ans.$$

In addition, if $\angle BAD$ has absolute maximum.

$$\cos \angle BAD = \frac{a^2 - 25}{24}$$

Comment

(If,
$$a \ge 7$$
, no quadrilateral

If, $0 < a \le 1$, $\sup(\angle BAC + \angle CAD) = 180^{\circ} + \cos^{-1}\left(\frac{a+3}{4}\right)$ (when $BC \to 3+a$)

(If, $0 < a < 1$, The quadrilateral $ABCD$ is concave.)

That is, if and only if "1 < a < 7, $\angle BAD$ has absolute maximum $\iff BC = 4, CD = 3$ " is true.

Graphs of the functions of length of BC and $\angle BAD / (\angle BAC + \angle CAD)$