コメントアウトは# [例1]f(x)=x^5+15*x+12のGalois群の位数,生成元,リスト _.= PolynomialRing (QQ) f1 = x^5+15*x+12 G1=f1. galois_group () [G1.order(),G1.gens(),G1.list()] [例2]f(x)=x^5+ax^3+bx^2+cx+d(-11= PolynomialRing (QQ) for i in range(-10,11): for j in range(-10,11): for k in range(-10,11): for m in range(1,11): f=x^5+ i*x^3+j*x^2+k*x+m if f.is_irreducible(): g=f.galois_group() if g.order()<60: print([[i,j,k,m],g.order(),g.gens()]) [例3]生成元からリストを作る G=PermutationGroup(['(2, 4, 5, 3)','(2, 5)(3, 4)','(1, 3, 5, 2, 4)']) G.list() [例4]上のGがF20と同型か否かを調べる F20=PermutationGroup(['(1,2,3,4,5)','(2,3,5,4)']) G.is_isomorphic(F20) [例5]Gが可解群か? G.is_solvable() [例6]Gの正規部分群 G.normal_subgroups() [例7]ガロア流の群Kを現代の表記に直す K=[[1, 2, 3, 4, 5], [5, 1, 2, 3, 4], [4, 5, 1, 2, 3], [3, 4, 5, 1, 2], [2, 3, 4, 5, 1], [1, 5, 4, 3, 2], [5, 4, 3, 2, 1], [4, 3, 2, 1, 5], [3, 2, 1, 5, 4], [2, 1, 5, 4, 3], [1, 4, 2, 5, 3], [5, 3, 1, 4, 2], [4, 2, 5, 3, 1], [3, 1, 4, 2, 5], [2, 5, 3, 1, 4], [1, 3, 5, 2, 4], [5, 2, 4, 1, 3], [4, 1, 3, 5, 2], [3, 5, 2, 4, 1], [2, 4, 1, 3, 5]] F=[PermutationGroupElement(K[i]) for i in range(0,len(K))]#Fはリスト G=PermutationGroup(F)#Gは置換群 G.list() [例8]群の演算 G([3,4,5,1,2])#[1,2,3,4,5]を[3,4,5,1,2]に移すGの元. [G[0],G[1],G[2],G[3]]#Gの最初の4個の要素 G[1]*G[2]#群の要素の積 G[1]^(-1)#G[1]の逆元 G[1]([1,2,3,4,5])#G[1]=(1,3,5,2,4)による[1,2,3,4,5]の置換 [G[i]([1,2,3,4,5]) for i in range(0,order(G))]#Gによる[1,2,3,4,5]の軌道 [例9]様々な群("named permutation groups"で検索し最初の項目) 対称群Sn->SymmetricGroup(n), 交代群An->AlternatingGroup(n), 2面体群Dn->DihedralGroup(n), 巡回群Cn->CyclicPermutationGroup(n), Kleinの4元群->KleinFourGroup()