[例1]f0,f1,f2,f3のガロア群 _:=PolynomialAlgebra(Rationals()); f0:=x^5+1; f1:=x^5-10*x^3+5*x^2+10*x+1; f2:=x^5-5*x+12; f3:=x^5+15*x+12; f0,GaloisGroup(f0); f1,GaloisGroup(f1); f2,GaloisGroup(f2); f3,GaloisGroup(f3); [例2]f(x)=x^5+ax^3+bx^2+cx+d(-1:=PolynomialAlgebra(Rationals()); for i in {0..3} do for j in {0..3} do for k in {0..3} do for m in {1..5} do f:=x^5+i*x^3+j*x^2+k*x+m; g:=GaloisGroup(f); if Order(g) le 60 then print f, g; end if; end for; end for; end for; end for; [例3]f=x^3-2 の原始元vの最小多項式と,vによるfの解の表現 R:=PolynomialRing(Rationals()); f:=x^3-2; K:=NumberField(f); Degree(K); S:=SplittingField(x^3-2); S; fn:=Factorization(Polynomial(S,x^3-2)); fn; C:=[-Coefficient(g[1],0): g in fn]; C; [例4]10次方程式のGalois群 _:=PolynomialAlgebra(Rationals()); f:=x^10-5*x^5+9; g:=GaloisGroup(f);g; [例5]100次方程式のGalois群 _:=PolynomialAlgebra(Rationals()); f:=x^100-3*x+1; g:=GaloisGroup(f); g;