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1. Advantages of using 
Computer Graphics (CG).

• Grids can be drawn easily.

• Effects of changing the ‘original objects’ or 
‘matrix’ can be seen immediately.

• Exotic objects such as photos can be transformed.

• Animations can be used. 
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Use a palette or 
type it in the field.
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 Animation  of  Rotation&Enlargement by 
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is right-at-the-moment matrix. Which starts from the unit matrix and finishes as the target matrix.Curr matrixent

2. EigenVectors & Animation

Animation is useful for rotation - which has 
no real eigenvectors- , 
but it works even better  for transformations
which have real eigenvectors. 

Next example has 2 eigenvectors.
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Comparison of 2 transformations which have same eigenvalues.ex4.
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When the base is (1,0) ,  transformation looks one and (0,1  of m) any.
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When the base is eigenvectors,  transformation is easier to understand.
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 and  have the same eigenvalues, thus they work similarly.
Eigenvectors&values decide how linear transformations work.
A B
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Choose the base here.
e1&e2 are the base 
set by you. (left)
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 shows the similarity between A&B.    represents

the same transformation as , but it's the expression  by   and  .
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