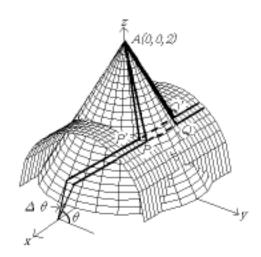
6 【解答】途中まで5 と同じ。m と円錐の側面との交点をP,Q とすると、5 より、

$$PQ = \frac{2}{\sqrt{3}} |2\sin\theta - 1| \qquad \cdots$$

次に、直線 PQ における円柱の接平面を π とすると、

$$\pi : \cos \theta y + \sin \theta z = 1$$
 ... \mathbb{Q}

 π と A(0,0,2) との距離を h とすると, h は yz 平面における直線 $\cos\theta y + \sin\theta z - 1 = 0$ と点 A(0,0,2) との距離と等しいから


$$h = \frac{|2\sin\theta - 1|}{\sqrt{\cos^2\theta + \sin^2\theta}} = |2\sin\theta - 1| \qquad \cdots \Im$$

平面 $\pi(\theta)$ を、直線 $m(\theta)$ と A(0,0,2) で定まる平面とし、K のうち、 $\pi(\theta)$ と $\pi(\theta+ \Delta\theta)$ で囲まれる部分の体積を ΔV とすると、 $\Delta \theta=0$ のとき

$$\Delta V = \frac{1}{3} \times (PQ \times 1 \cdot \Delta\theta) \times h = \frac{2}{3\sqrt{3}} (2\sin\theta - 1)^2 \Delta\theta \qquad \cdots \oplus$$

よって

$$V = \frac{2}{3\sqrt{3}} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (2\sin\theta - 1)^2 d\theta$$
$$= \frac{4\sqrt{3}}{9}\pi - 2 \qquad \cdots (5)$$

