Linear Transformation with CG \& animation

 Ogose ShigekiKawai-Juku
Tokyo, Japan
http://mixedmoss.com/atcm/2012/

1. Advantages of using Computer Graphics (CG).

- Grids can be drawn easily.
- Effects of changing the 'original objects' or 'matrix' can be seen immediately.
- Exotic objects such as photos can be transformed.
- Animations can be used.
ex1. Transformation by $\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right) \begin{aligned} & \text { Example of linearity } \\ & 2 \overrightarrow{\mathrm{OA}}+3 \overrightarrow{\mathrm{OB}} \rightarrow 2 \overrightarrow{\mathrm{OA}^{\prime}}+3 \overrightarrow{\mathrm{OB}^{\prime}}\end{aligned}$

ex2. Transformation of a photo by $R(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

ex3. Animation of Rotation\&Enlargement by $F=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$

Current matrix is right-at-the-moment matrix. Which starts from the unit matrix and finishes as the target matrix.

2. EigenVectors \& Animation

Animation is useful for rotation - which has no real eigenvectors- , but it works even better for transformations which have real eigenvectors.

Next example has 2 eigenvectors.
ex4. Comparison of 2 transformations which have same eigenvalues.
For $A=\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right), \quad A\binom{1}{0}=5\binom{1}{0}, \quad A\binom{0}{1}=2\binom{0}{1}$
eigenvectors : $\binom{1}{0} \&\binom{0}{1}$, eigenvalues :5\&2, respectively.

For $B=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right), \quad B\binom{1}{1}=5 \cdot\binom{1}{1}, \quad B\binom{-2}{1}=2 \cdot\binom{-2}{1}$ eigenvectors : $\binom{1}{1} \&\binom{-2}{1}$, eigenvalues :5\&2, respectively.

Transformation by $A=\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$. When the base is $\binom{1}{0}$ and $\binom{0}{1}_{\text {muffine.jar }}$

Transformation by $B=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)$. When the base is $\binom{1}{0}$ and $\binom{0}{1}_{\text {muffine.jar }}$

When the base is $(1,0)$ and $(0,1)$, transformation looks one of many.

Transformation by $B=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)$. When the base is $\vec{e}_{1}=\binom{1}{1}$ and $\overrightarrow{e_{2}}=\binom{-2}{1}$

When the base is eigenvectors, transformation is easier to understand.
A and B have the same eigenvalues, thus they work similarly.
Eigenvectors\&values decide how linear transformations work.

$P^{-1} B P$ shows the similarity between $\mathrm{A} \& \mathrm{~B} . \quad P^{-1} B P$ represents the same transformation as B, but it's the expression by $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$.

